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SECTION I
INTRODUCTION

Aerodynamics of missiles at high angle of attack has bhecome
increasingly important for modern design requirements. Examples
of this are high maneuverability of air~to~air-missiles and high
launch angle of attack. At high angle of attack a body of revolu-
tion sheds two symmetric vortices from the leeside of the body
and these grow in strength along the length of the body. The
missile's attached lifting surfaces are immersed in this vortex
wake flow and, consequently, the surface pressure distributions
are significantly changed from the potential flow case. This,
in turn, causes nonlinearities in the forces and moments produced
by the lifting surfaces. These nonlinearities have been known to
cause serious flight stability and controllability problems in
missile dynamics.

Attempts at predicting the forces and moments produced by
lifting surfaces in a symmetric body vortex wake have met with
moderate success., Very early work was done by Mello and Sivier?!
for cruciform fin missiles in supersonic flow. References 2 and
3 were reasonably successful for incompressible and supersonic
flow, respectively, but they only considered rectangular fin
planforms. The approach taken in Refs. 2 and 3 was to calculate
the body flow field using a vortex modeling technique and then
use this as input to a lifting theory. The most extensive work
on the subject has been achieved by Nielson and his associates
(see e.g., Refs 4-7). They have attacked the very difficult

problem of a general canard-fin-body configuration in transonic

b

:Nmé“ St S
i,

LS L g 7% rolkivr o SRRIPI

b s S




AN AR o e
%

USRS 5 4 B S e,

and supersonic flow with both symmetric and asymmetric body vortices
and canard vortices. Their approach is a combination of slender

8.9 nethod for the impulse flow analogy,

body theory, Deffenbaugh's
and data base experimental input for fin (or wing) alone charac-
teristics.

The present investigation is concerned with the prediction of
fin forces and moments on missiles at high angle of attack in sub-
sonic and transonic flow. The body is assumed to be a circular
cylinder with only cruciform fins (or wings) as attached lifting
surfaces. The fins are assumed to be planar and have straight
leading, trailing, and tip chord edges. The leading edge can
have arbitrary sweep back and the trailing edge can be swept
back or forward. The missile can have an arbitray roll (or
bank) angle and each fin can have arbitrary control deflection.
The vortices shed from the body are assumed to be symmetrically
located with respect to the angle of attack plane and of equal
strength but opposite rotational sense. The highest angle of
attack of the body for which the body vortices remain symmetric
depends on the nose fineness ratio, body fineness ratio, and
Mach number; but normally this angle is near 25°. The method of
calculating the body flow field will be discussed first then the
lifting theory for the prediction of fin forces and moments is
developed. The body flow field model and lifting theory use
some empirical data, but the user of the method need not provide

any additional data. A computer program was written to implement

the present method.




Extensive comparisons are made between predicted results and
experimental measurements. Included in the comparisons are:

panel normal force, root bending moment, induced roll moment,

. nonlinear roll damping moment, pitch (or yaw) control forces,
and roll control forces. The force and moment predictions

are compared with experimental data for six different fin geo-
metries; these include delta, clipped delta, and rectangular
planforms. Predictions for wing alone normal force charac-
teristics are compared with data for rectangular, delta,
clipped delta, diamond, arrow, clipped arrow, and trapezoidal
planforms. Extensive discussions are given which explain the
underlying aerodynamic causes of fin force and moment non-

linearities and how these are related to fin geometry.
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SECTION I1I

AERODYNAMIC ANALYSIS

The general approach to the aerodynamics of the problem is
to calculate the body flow field and then calculate the forces
and moments of attached lifting surfaces exposed to this flow
field. This approach is clearly based on the assumption that
the body flow field is not significantly affected by the flow
induced by the lifting surfaces. This assumption implies that
the present analysis is not appropriate for missile configura-
tions in which the fin root chord is a large portion of the
length of the missile body. The present analysis also assumes
that there is only one set of lifting surfaces (wings or fins)
and that it is arranged in a cruciform configuration. The
present approach could be applied to a two or three fin
configuration by making appropriate modifications to the
lifting theory.

This present approach naturally divides the analysis into
two areas: the body flow field and the prediction of lifting
surface forces and moments. The model of the body flow field
was developed previously in Refs. 2 and 10. For completeness,
however, the model and the associated computational procedure
will be described in this report. The prediction of lifting
surface forces and moments will be described in two phases.
First, the lifting theory for calculating the normal force
distribution and the total normal force of the lifting

surface in uniform approach flow will be described. Second,

L A ——



the model of the body flow field and the lifting theory
will be combined to yield a method for predicting forces
and moments of attached lifting surfaces.
1. BODY FLOW FIELD

The flow field of a circular cylindrical body at high angle
of attack is dominated by the presence of body vortices and
their associated feeding sheets. Figure 1 shows the coordinate
system and a schematic of the body vortex wake flow. These
vortices increase in strength as the angle of attack or body
length increases. To model this complex separated flow, the
flow is divided into the cross-flow components, Ve and Wa and
the axial flow component, U  cos a,. The local flow velocity

can then be expressed as:

V= Uu cos %, i+ Vo 3 + w, k (1)

It is assumed that the steady, three-dimensional, body flow
field can be divided into a constant axial flow component and the
two-dimensional, potential, flow about a civcular cylinder with
vortices in the wake and their associated image vortices inside
the cylinder. Essentially all of the vorticity is located in-
side the vortex cores of the primary body vortices and the
vortex feeding sheets connecting the body boundary layer separa-
tion points and the primary body vortices. Figure 2 shows the
primary and sheet vortices in the cross-flow plane. Using this

model the cross-flow velocity components can be written as




2 b
-2U a“yz T z2 -2
¢ P J J
v = + b= (-l)
¢ WP+ 2P A Jgi (v - YJ)Q + (z - 23)2 (2a)

v

21“s d
+ "sz - L) 3=5 (-1)

2 -2
- l«-e"C
(y~%F+(z-%F[ )

MZ

(1. 222 T 5 . 26,
el lu"[“ 2 + 22)2 ) 2m 3=l (-1 x
NV

y-yi

s 2 ()
- - (-1 x ;
(y - yj)‘? + (Z - zj)?- ﬂ(NV - k) 3=5 {

v l@-em}

z 2
¥ - yg)" + (2 - 2) ’

where
C = 1.25&[(}* - yv)z + (2 = zv)z]/rea

_ yl’zl y 2 o
yv:zv =
yh’zl& y<o

and U, = U_sin o) is the free stream cross-flow velocity,

a is the body radius, Ip is the strength of a primary body

vortex, Iy is the strength of a vortex sheet, Yyr 25 is the

location of the j'th vortex, N, is the total number of vortices

v
in the cross-flow plane, and r, is the vortex core radius. The
dependence of rp, I'sr Y1+ %21+ and r, on angle of attack and

body length is taken from experimental measurements.




L By

4

The exponential term in Eqs. (2a) and (2b) was included so
as to model the solid~body tyve rotation in the cores of the
primary body vortices. This method of approximating the vortex
cores yields a cross-flow vélocity field which is continuous,
whereas simply imposing a solid body rotation onto a potential
flow field does not.

Utilizing the_assumption of a symmetric vortex wake, the
relationship between the locations of all of the vortices in

the cross~flow plane becomes

2 2 2
yj = -y,j"‘l =a yd-l/(yj-l + zd"l)
(3a)

[}

for § = 2,6,10,...N, - 2
Zy = 2y T 3223_1/(y§_1 + Z?_l)

"

= e - )
¥y Y33 and Zy = 243 for J 4,8,12,.,,N§ {3b)

With these equations the location of all of the vortices can
be related to the location of the vortices external to the body
in the positive y - z quadrant, i.e., j = 1,5,9,¢4.N,-3.
The location of the right-hand vortex sheet, sg = rsei¢, is
given as
8y = [a cos(m ¢/2 ¢l) + (r1 +r) sina(n ®/2 wl)/

L
{1 +(z) + 1 )0, - ¢)/a}] gL B S 05 0 ()

where r;, ¢; is the radial and angular location, respectively,

of primary vortex number 1, and 9 g is the angle at which the
sheet separates from the body. The vortex sheet location, as
given by Eq. (4), yields a slight improvement in comparison with
experimental data of Ref. 11 as compared with that used in

Refs. 2 and 10. Eq. (4) requires that the vortex sheet terminates

at the core radius of the primary vortex, whereas the equation

i ﬁ’r:@.«, F - -~ o~ s - - «i-s‘wv—‘:-ﬁg-ﬂr -
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used in Refs. 2 and 10 terminated the sheet at the center of the
primary vortex.

¢ss is defined as the angle at which the radial location of

the sheet achieves a value of l.0la. Therefore,
2
cos{m ¢ss/2 ¢l) + (r1 + rc) sin“(m ¢58/2 ¢1)/

(5)

[a + (rl + rc)(¢l - ¢ss)] = 1.01
The low strength vortices which represent the vortex sheet
are equally spaced in arc length along the sheet. The arc
length of the vortex sheet is
1 ., [, 2j1/2
Ly = Ts * (?E;) dp (6a)

S8

where r, is the magnitude of sy, from Eg. (4), and

s
drs
E— = -(8. ﬂ/2 ¢l) sin(rr ¢/2 ¢l) +

[{(rl +r) 'n'/¢1} sin(r ¢/2 ¢,) cos(m ¢/2 ¢1)<l +
2 2
(x, + 2 )0, - /o) + {ir + 2 /a) sxsfim 072 0))]/
2
{l + (rl + rc)(°1 - ¢)/8.} (6b)
The first vortex in the sheet, vortex number 5, is located
at the point where the sheet leaves the body so that rg = 1l.0la

and ¢g = ¢.5. The angular position for vortex numbers

5'9'13""Nv‘3 is found from

) 271/2
T i RO 2 N
(N& - s 5 deo (7)
88

Once the angular position is known from Eq. (7), then from Eq.

(4), one obtains the radial location:




ry=e cos(n ¢3/2 @)+ (ry + rc) sinz(n ¢j/2 ¢1)/

(8)
{10ty v x 00, - 0,7}
The experimental inputs required by the theory will now be
discussed. The total strength of all the vorticity, r, (primary
vortex and feeding sheet) in each half-plane of the wake is

taken from the experimental data of Groschelz.

r,/mau,) =.35(x/a~6) a® forx/a>é (9)

This equation represents the data of Grosche for 7° < Qb < 20°

and 5 = X/d < 13 for incompressible flow. No extensive body

TLRIGRAL TR

vortex wake surveys have been conducted in compressible subsonic
flow.

The division of vorticity between the primary vortex and
the fceding sheet is taken from a correlation of data g;ven in

Ref. 11, This correlation 1s represented by

EP. =1 - .15(x/a) o+ .008(x/a)? 2
T, ‘ % %

where I, = T'p + Ig. Although the data from Ref. 11 is for

(10)

supersonic flow, it 1s a reasonablr. assumption that the ratio
of primary vortex strength to total vorticity is the same in
subsonic and supersonic flow.

The location of the primary vortex is taken from the ex-

12 13

perimental data of Grosche~“, Tinling and Allen*”, and Fidler,

14

Nielsen and Schwind. The experimental data for the location

of the right-hand primary vortex (vortex number 1) in polar

coordinates is approximated by




8, = Th°
. (11)
rl/a = .70 + .06 \/F (x/a + 6)\/5,b
These equations incorporate the moderate increase in radial
location of the vortex center with Mach number measured by
Tinling and Allen.
The radius of the vortex core is taken from the data of
Ref. 11. A fit of the data for angles of attack of 10° and
15° and body lengths from 7 to 14 calibers is given by
rfa = .030(x/a)ﬁ..: (12)

The computational procedure for the body flow field

model will now be discussed. The order of calculation is as

follows:
(1)
(2)
(3)
(4)
(5)
(6)

(7)
(8)

@, and x are set.

I, is calculated from Eq. (9).

15 and Ig are calculated from Eq. (10).
] and ry are calculated from Eq. (1ll).
is calculated from Eq. (12).

¢ss is computed from Eq. (5) by increasing ¢y  from 0°
in increments of .01¢) until Eq. (5) is satisfied. Re-

call that ¢ 4 = 95 and rg = 1.01la.

Lg is calculated from Eq. (6) by Simpsons's Rule.

¢j for j = 9,13,...N,~3 is calculated from Eq. (7)

by increasing 5 from $5-4 in increments of .01¢; until

10
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the integral equation is satisfied. The integral is
evaluated by Simpson's Rule. In the present work N, is
set at 44, that is, 10 vortices in each sheet.

{(9) rj for j = 9,13...N,-3 is calculated from Eq. (8).

(10) Yyr 25 for j = 1,5,9...N,~3 are calculated from ¢j' ry
using the polar to cartesian transformation.

(11) Yy 25 for all remaining vortices are calculated from

Eq. (3).

(12) v,, W, are calculated from Eq. (2).

2. LIFTING THEORY

Various lifting theories were considered for use with the
present flow model for the prediction of forces and moments pro-
duced by fins. The criteria by which a lifting theory was chosen
was that the theory must be able to consider very nonuniform,
rotational, approach flow and it must include €fin stall and post-~
stall characteristics. These criteria quickly limited the possible
theories to strip theory. 1In strip theory it is assumed that the
normal force on a chordwise strip of fin can be calculated by using
the local dynamic pressure and angle of attack of the strip, inde-
pendent of adjacent chordwise strips. Significant elements included
in the present lifting theory are the following: normal force dis-
tribution over the lifting surface depends upon fin aspect ratio and
leading and trailing edge sweep, individual control deflection of

each fin is allowed, fin-fin interference due to both control deflec~

tion and rolling rate is included, normal force depends upon freestream

Mach number, and nonuniform approach flow alters the effective

leading edge sweep.
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a., Local Normal Force

The local normal force on a differential element of the fin

surface is written as (see Fig. 3)

N = Cn q dx dr (13)

where C, is the local normal force coefficient and q is the local
dynamic pressure, including that due to missile rolling speed.

The local normal force coefficient C, is composed of three separate
functions: first, the normal force due to the local angle of at-
tack of the differential element; second, the local chordwise
distribution; and third, the local spanwise distribution.

Assuming a product form of the function, one has

c,=o0 CN(“L) c(x,r) s(r) (14)

where ¢ is a geometric scaling factor, CN(a! ) is the local normal
force coefficient due to local angle of attack, and C(x,r) and
S{r) are the chordwise and spanwise normal force distributions,
respectively, for uniform approach flow.

For arbitrary planform fins it greatly simplifies matters if
C and S are written in terms of appropriate fin oriented coor-
dinates. To determine the appropriate fin oriented variables,

first write the x coordinate of the leading and trailing edges

of the fin as

12




X =% ¥ (x2 - xl)(r - a)/(bO - a)
(15)
Xpo = X3 ¥ (xu - x3)(r - a)/(bo -a)
where x;, X5, X3, and x4 are defined in Fig. 3, and b, is the
semi-span of the fin. x,, x3, and x4 can be related to the
leading edge sweeps Ale' the trailing edge sweep Ay, and the
root chord of the fin ¢, as
X, =% + (bo - a) tan Age
(16)
X3 =X + e
X, = X + (bo - a) tan \te
Substituting these equations into Egs. (15), one obtains
Xpe =% t (r - a) tan AZe
(17)
x =

4o =Xy Yot (r - a) tan,\te

Using the boundaries of the fin planform, i.e., Xper Xeer &y
and by, as scaling variables, then a convenient set of fin oriented

coordinates are

gy
H

(x - xte)/(xze = xte) (18)

=3
it

(r - a.)/(bO - a)

where ¢ is the chordwise variable and N is the spanwise variable

(Fig 4).
b. Nomal Force Distribution

Experimental datals-19 for the normal force distribution over

the surface of a number of fin planforms was studieq in order

13
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to arrive at general expressions for C({) and S(n). After devis~-

ing and testing a considerable number of expressions for the
chordwise and spanwise distributions, the following equations

were adopted

o(6) = VE expt?/Veos 4_ |

s(n) = (l + n%e)m

where
A =20 -a)’s
e (< £
1
Sp=3 (b, -a)j2c /(b -a)-tanA, + ta.nAte]
A, is the exposed aspect ratio, that is, the aspect ratio of

e
the lifting surface formed by eliminating the body and placing

the root chords of two adjacent fins together. S¢ is the
planform area of a single fin. Egs. (19a) and (19b) have
been shown to give vaiid results for exposed aspect ratios
from .5 to 5, leading edge sweep from 0° to 80°, and trail-
ing edge sweep from -60° to 800,

The normal force distribution over the surface of the
fin for uniform approach flow is then provided by the pro-
duct of Egs. (19a) and (19b). This expression was compared

qualitatively with experimental data by means of a three-

*The pressure distributions from Egqs. (19a) and (19b) were

qualitatively compared with experimental data of Refs. 15~19.

1k
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(19b)

(19c¢)
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dimensional computer graphics routine, DISSPLA. This
routine provided a means of visualizing the normal force
distribution over the surface of the fin. Shown in Figs.
é 5 through 9 are sets of three-dimensional perspective plots
» of typical planforms examined. Figure 5 shows a sequence
é . of untappered fins withAle =Age = 60° for A, = «5, 1, and
: 3. The view in the perspective plot is from behind and
above the fin surface looking upstream, and slightly in-
board. The graphics routine uses a rectangular area over
which the surface function is definedf Consequently, the
regions which show a surface value of zero are not part
of the fin planform. For example, on Fig. 5 the trail-
ing edge of the fin is located at the junction of the
nonzero and zero surface values. Another point to note
on the perspective plots is a "spike" character at the lead-
ing edge of the planform. This characteristic is not in-
herent in the equations but simply is a result of the mesh
size on the surface and the zero value of the surface just
ahead of the leading edge.

Figure 6 shows a sequence of fins with Age = 60°,

Age = 20° for A, = .5, 1, and 2.92. In Fig. 6 the taper
ratio decreases until in Fig. 6c an arrow wing is achieved.
} Note in this sequence of figures that as the leading edge

7 becomes longer the normal force loading reflects the very
high loading near the leading edge due to the increasing

§ strength of the leading edge vortex.

* The units on the span coordinate and the local normal force
coordinate in the figures have no physical significance.
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Figure 7 shows a rectangular planform for Ay =
«5, ls, and 3., For the low aspect ratio planform
(Fig. 7a) note the increase in normal force near the tip
chord due to the tip vortex increasing in strength along
the tip chord. For the high aspect ratio planform (Fig.
7¢) it can be seen that the spanwise load distribution
nears the classical elliptic loading.

Figure 8 presents the loading for Me = 60°, Age = 0°
and A, = 5, 1., and 2.31. Figs. 8a and 8b show clipped
deltas and Fig. 8c shows a delta planform, Comparing
the distribution for the delta planform with experimental
datal® it is found that the empirical squation models the
data except near the leading edge.

Figure 9 shows a trapezoid planform with decreasing
taper ratio, Agg = -Age = 40° and A, = .5, 1., and 2.38.
The planform with A, = 2,38 (Fig. 8c) has a taper ratio
of zero and is, therefore, a diamond planform,

The geometric scaling factor in Eg. (14) can now be
determined. ¢ is evaluated by the requirement that the
integrated average of the assumed normal forcz distribution
over the surface of the fin must be unity, i.e., the
assumed normal force loading must be normalized. Therefore,

orie may write

qufcndA=%chf
fin

16




Substituting C, from Eg.. (14), one has

b x
te
o ff C(x,r) 8(r) dx dr = Sp
& X,

Transforming to the fin coordinates £, (Eg. 18) and

solving for ¢, one obtains

c= 1 1
20a
(b, - a)[fﬂ(n) C(£) s(n) ¢ an (20a)
©°
where
Q(n) = c. - (bo - a)(tan ‘\ze - tan Ate)n (20b) f
and C(t) and S(n) are given by Egs. (19). i
c. Local Angle of Attack 1
Referring back to Eq. (14), Cy depends on the local |
angle of attack of the chordwise strip. The local angle
of attack is calculated by utilizing the unit normal vector
of the fin surface, n, and the total velocity V (Fig. 10). i
The geometric local angle of attack can be shown to be
|
(21) |

ay = st (5 o V/(I5) 7))

The surface normal vector of tle f£in depends on the roll
angle ¢ and the control deflection of each fin 657
i=1, 2, 3, 4, Let the sign convention of the control
deflection of each fin be as follows: positive control

deflection of fins 1 and 3 produces a positive normal

force, i.e., a pitch down maneuver, and postive control

17




deflection of fins 2 and 4 produces a positive side force,

i.e., a yaw left maneuver (see Fig., 10), The sign con-
vention for the surface normal vector, however, is such
that the vector always points in the counter-clockwise
direction, Referring to Fig. 10, the surface normal

vector is

n = gin(A 63) T- cos(bj) sin ¢ § + cos (55) cos ¢ Kk (22)

where
a = cos ¢/|coz ¢

A simply provides the sign of 64 which is consistent with
the above mentioned sign convention.

The local total velocity, i.e., the velocity of the
fluid relative to the chordwise strip, is composed of two
types of terms; £irst, the fluid velocity relative to
the fixed coordinate system, and second, the velocity of
the fixed coordinate system relative to the spinning

chordwise strip. Therefore, using Eg. (1) it can be

written
V=U_ cosq i+ (v, + ér sin ¢) 3 + (w, - gr cos @) k (23)
where v, and w, are given by Eq. (2) and 5 is the roll

rate of the missile.
The axial location at which the flow model is evaluated
is calculated from the fin planform characteristics. The

axial location is chosen to be the average quarter chord

18
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location of the root and tip chords. That is,

Xy = (x] + 425C, + x5 + .250t)/2

where Ry 1S the axial location of the vortex model and

¢, is the length of the tip chord. Rewriting this

equation, one has

Xy = Xy + (e25¢, + e25cy + (b, - a) tan Ale)/z
This axial location is used in Egs. (9) through (12).

The geometric local angle of attack can now be cal-
culated by substituting Egs. (22) and (%3) into Eg. (21).
Interference between fins, however, will alter ag for
control deflection and a rolling missile. These inter-
ference effects will be considered in Section II-3,

Roll Moment.

d. Effective Aspect Ratio

Now consider an aerodynamic effect which occurs when
the lifting surface is attached to the missile body. If
the body is at high angle of attack then the angle in the
plane of the fin between the approach flow and the fin
leading edge can vary significantly, depending on the roll
angle of the body. That is, the fin is yawed with res-
pect to the approach flow for various roll angles around
the body. This yaw angle results in an effective change
in the leading and trailing edge sweep and effective
aspect ratio of the fin. A simple example of this is

to consider fin 4 at a roll angle of 0° with the body at

19
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angle of attack @), (see Fig., 10). Then the effective
leading edge sweep of fin 4 at ¢ = 0° is approximately
Aze"“b' 1f A!e = 0°, then the fin at this roll

angle would actually be swept forward.

The effective leading edge sweep, ﬁge' and effective
trailing edge sweep, ﬁte' are derived by relating the
average flow velocity along the fin to the leading and
trailing edge unit vectors, respectively. The most
convenient coordinate system to use is cylindrical
coordinates with the orthogonal unit vectors located in
the plane of the fin (see Fig. ll). Let V, and W, be

the average crossflow velocity components along the exposed

semispan of the fin at a given roll angle. Then

b

o
v = 1 v (r, @) ar
¢ b -8 et ?
)
&
b
0
w = 1 -/f w (r, ¢) dr
¢ b -8 c'?
° a

where v, and W, are given by Egs. (2). Rewriting these

equations in terms of fin oriented coordinates, one has

1 (24a)

v, = [’vc(m @) dn

20




1

;'c = fwc(n, ¢) dn

o

Using the cylindrical coordinate unit vectors €,, €.,

shown in Fig. 11 the average velocity along the leading

edge is

ol

where

u = Ua cos o'b
V. =V_cos ¢ +w_sin
r c ¢+ w, ¢

As the sweep angle is measured from a line perpendicular
to the approach velocityv, the unit vector perpendicular

to the average velocity is
= - -2 -2 -* - '2 -2 b
v, = -vr/\/u Ve + aNe® + Vie,

The leading edge unit vector is

- . - +
= 8in e COSs
e sin Ay, ey A

Le Le er

The effective leading edge sweep angle is the angle

between ?l and'gle. Using the scalar product, one obtains

~ - -l -y -

Substituting in Egs. (25) and (26),
Y = eos~tllz - [ =2
Aze cos [(u cos Aze - v, sin A"e)/ v o+ er

21
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This expression presents difficulties in evaluation because
the arc cosine function is double valued. This problem can
be nicely circumvented by noticing that the argument of

the arc cosine function suggests Rle might be split into

two angles. Let

A, =A, +c¢
Le Le 2
® (28)

where €y, is the deviation of the effective leading edge
sweep from the geometric leading edge sweep. Now Eg. (27)

can be written as

- v
_ u ) r
c:os(l\me + eze) = = cos Aze == sin Aze
ut + vy v o+ v

Using the trigonometric identity for the cosine of a sum,

one has

co cos - gin sin =
8 €0 A € Aze

se se cos A - ————— gin Al,e

£

Matching terms one notes that two mathematically equivalent
expressions can be written for egp.. The one involving the
cosine function, however, suffers from the same difficulty

mentioned above. Therefore, use

sine, = \'ir/\/ﬁa + \'ri

Substituting this into Eq. (28), one finally obtains

A= Age + sin'l({'r/ 32 'i ) (29a)

1e
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Using exactly the same procedure, the effective

trailing edge sweeps is
Py -l - - -
Mge = Ay *+ 8in (vr/\/ i+ vi)

The effective leading and trailing edge sweep due to
high angle of attack results in an effective aspect
ratio of the fin. This is significant in that the local
normal force coefficient due to angle of attack, N (a! Yo
will now reflect effective changes in fin geometry due to
apparent yaw of the fin. To derive an expression for ﬁe,

begin with the definition of Ag:

A, = 2(bg - a)?/sg

where S5; is the exposed planform area of a fin. Writing
this in terms of fin semispan, root chord, and leading

and trailing edge sweep, one has

A, = l«/[zt:r/(bo - 8) - tan A, + tan Ate]

Referring to Fige. 12, it can be seen that the exposed
fin semispan and root chord also effectively change.
It can be shown that

N

b ~a-= (bo - a) cos Aze/cos A

[o] fe

Cr = cr cos Ate/cos(Aze - Aze + Ate)

(29b)

(30)

(31la)

(31b)




Using Egs. (30) and (31), the effective aspect ratio is

written as

L
e écr cos Aze cos A,
e

[
u

- tan A,ee + tan Ate (32)

(b, - &) cos Aye cos([\&e = Ay + Mee)
e. Expression for Cy (ay)
§§ The functional dependence of Cy on the local angle of at-
%f tack is given by an empirical expression based on lifting
surfaces in uniform approach flow. Other investigators

(see, for example, Ref. 6) have used experimental data for

CN(a!) directly in their analysis. This is rarely an
appealing approach because it requires vast amounts of

data to construct a data base sufficiently general to address
general planforms over a large range of Mach numbers. Also,
this is not possible in the present approach because the

effective geometry of the fin, discussed earlier, changes

o AR B BT W | P

with the character of the nonuniform approach flow. i
As the local angle of attack on a missile fin can be
on the order of 40° to 50° when the angle of attack of the
body is 25°, the expressioQ for Cylay) must include pre- (
stall, stall and post-stall characteristics. The pre-stall
if expression for Cy(a,) is taken from the work of Lecat and

21 SUucC-

él Rietschlin.?0 Their analysis is based on Polhamus
3 tion analiogy. They have extended the original work of : %

Polhamus on delta wings to include arbitrary planforms
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and transonic flow. Their analysis is not repeated here,
but simply their equations are given in the present no~
menclature,

Their expression for Cy(a) is

cyla) = K, sina cos o+ K, sin g (33)

Note that this equation shows Cy continually increasing
withaand, as a result, is not appropriate for angles
near or greater than the stall angle. Although Lecat and
Reitschlin state their method is applicable to subsonic
and supersonic flow, the present analysis is considered
appropriate for subsonic flow and only supersonic flow with
subsonic leading edges.

The calculation procedure for Kp and Ky is as follows:

(1) Calculate 5;’:\3, er, and ﬁe from Egs. (31)

and (32)
(2) Calculate the distance from x; to the aftmost

. . *
point of maximum span, c, .

»* ~ e, A
cr = cr + (bo - 8.) tan Ate

(34a)
(3) Calculate the sweep of the semispan diagonal, Y.
P § PO i A (34b)
v = tan [?r/(bo - a) + tan Ate]

(4) Calculate the rati. of planform area to rec-

tangular reference aregz, Sf/sf*.

* (
S
SE'/Sf } {34c)

e s 2

[ ——




(5) If My, > 1, calculate the complement of the

Mach angle, Yme

- -1
Yy = o8 (/M)

(6) Calculate the planform parameter p*.

S4/S¢ for M, s 1

*
5./8
/S for M_> 1

\1 -[tan YM/ (2 tan ﬂj

{(7) Calculate the planform angle ¥.

tan'l(zp* tan y) Mos 1

tan-l[ap* (tan y - tan YM)] M >1

(8) Calc{xlate the compressiblity factor gB.

(9) Calculate the potential flow lift coefficient, K

%

-
=

\ll-Mi forMmSl
JIE -1 fory >1

Ly

tan § + \/ta,new + (s1n2w/p*2) + hgz

26
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(3ke)

(34£)

(34q)

(34h)




(10) Calculate the vortex flow lift coefficient, K

K, = [Kp - (x123 tan ) /hﬂ] m

v'

(341)
An empirical expression was devised for the normal force
coefficient Cy(ay) based on the expression of Lecat and
Rietschlin, Eqe. (33). The new expression is more general in
the sense that it applies at stall and beyond stall. This
expression was constructed after examining and comparing
a large number of trial expressions with experimental
datam'ls"23 for a wide variety of planforms. This expression
is
(K sin a,cos &, + K sin @ )[l - (-p)(a,/a )3] 0O<qa,sSaq
P L L v 4 L s L 5
CN(az) = f<Ae’Aze> CN<as> + [Ae cos Az e CN<°‘3,'°“s>] /10 ag <0, < 20, (35a)
fqe’“;? Cye> * [Ae cos A, CN<°'3>]/10 20, <@,

where the symbol < > is used to denote functional dependence in

situations where the standard symbol ( ) would be confusing. Also

M= ,9 - .2 Ae sin 2Ale
u] :
a, = 38[1 + .cz(Ae -2) [l +1.1 (Ae - 1)2 > cosgAZG] x

A 2(A_-1
{l + [6(Ae - 1)2 sinuAZe]/e e}/[cos N * 1] € )

L

. A i
_ 1l e e
£(Ag» Aze) =1 - .35{1 tge sin A, sin[(Ae - 2.1) Aze]}/

(35b)

[l . 50, - 1)3] (35¢)

and Kp and K, are given by Egs. (33).
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As can be seen, CN(a!) is composed of three angle of attack
ranges: zero angle up to the stall angle, stall up to twice the
stall angle, and angles larger than twice the stall angle. For
the first range, angles less than ag, the expression of Lecat and
Reitschlinzo, Eq. (33), has been modified for o, near ag. Eq. (35a)
for a, < ag shows that as @, approaches oy the normal force
coefficient increases more slowly. This characteristic is
consistent with experimental measurements. The parameter p
represents the portion of Cy predicted by Lecat and Reitschlin
which remains at a, = oge The expression for ag, although
rather lengthy, gives a good estimate of the stall angle
(in degrees) for planforms with aspect ratios from 1 to 5 and
leading edge sweep from 0° to 70°% £(A,, Ay,) represents
the portion of Cylag) existing for o) = at. Note that pu,
@5 and f(Ae, Age) show no dependence on freestream Mach
number. This is not necessarily a reflection of the
physics, but simply an admission of lack of data.

CN(a!) as predicted by Eg. (35) was compared with data
for a very wide variety of planform geometries in order to
determine its range of applicability. Figures 13 through
22 show typical comparisons of Eqe. (35) with experimental
data for incompressible flow. The figures are placed in
order of increasing aspect ratio from 1 to 4. The leading
edge sweep angle varies from 0° to 70° and planform geo-
metries include: rectangular, diamond, clipped delta,

delta, arrow, clipped arrow, and trapezoidal. The com~

parisons are good for all planforms except that for the
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aspect ratio 3 trapezoid (Fig. 21) and rectangular plan-
forms of A, > 3 (comparisons not shown). For these type
planforms, i.e., high aspect ratio with small leading
edge sweep, the normal force past stall is significantly
over estimated with the present expression.

f. Fin - Fin Interference

Two types of fin - fin interference are included in
the present lifting theory. The first type is that due
to control deflection of the fins and the second type
is due to rolling motion of the missile., When a control
deflection is input to a fin the lifting flow field of
that fin induces an angle of attack on the adjacent fins.
This induced angle of attack causes the adjacent fins to
generate forces and moments dependent on the magnitude

and direction of the control input. Rolling motion in-

terference occurs for a similar reason except that the

.angle of attack of a fin is generated by the angular

velocity of the fin relative to the oncoming stream. Control
deflection interference will be considered first and then
rolling motion interference will be analyzed. Results of

slender body theory are used to evaluate both types of

interference considered here,

Figure 23 (taken from Ref. 24) shows the interference
flow fields and pressures induced on adjacent fins for
two types of control input: positive pitch control and
positive roll control with horizontal fins. For the pitch

control it is seen that a negative pressure coefficient
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is produced on both zides of the top fin and a positive
pressure coefficient is generated on both sides of the
bottom fin. For roll control, i.e., differential deflection,
a negative pressure is generated on the top right and

bottom left sides of the fins and a positive pressure

is generated on the top left and bottom right sides

of the fin. In the present analysis these induced pressures
are included by considering the adjacent fins to be at an
effective deflection angle.

Consider the induced pressures on adjacent fins for in-

dividual deflection of each fin. Shown in Fige. 24 is the
induced pressure and effective deflection force for positive
deflection of each fin. 1If we let Iy be the deflection in-
terference coefficient, then the following equations describe

the interference depicted in Fig. 24.

5 =1.6 5 =1.8
e, d 1 ) ey d 2
51 >0 4 6e =0 62 >0 < 5e = 'Id 52
3 3
i
3 § ==I_0 8§ =0
év \ e), d "l \ e,
%
4 (36)
] (
3 5 =0 8 = <«I.8
% ey e d L
i
ki 5, >0 8 = -I.08 6 »>0/786 =0
§
H 8§ =1.6 ) I. 6
3 eu d 3 \ e3 d Ll
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Summing all of the effective control deflections given in Egs.

(36) and including the actual control deflection, one obtains

[
P
f
(o]
o
+
-4
[=)]
~~
o
n
LI
O
=
"

On
I
o
~
+
~
[«
—~~
o
ot
$
o

3 (37)

I is evaluated by using the slender body theory results

of Adams and Dugan.25 They derived results for the roll moment

coefficient derivative, C!b' versus a/bo for differential de-
flection of two fins. They further showed results for the roll

moment coefficient induced on the vertical fins due tc differ-

O T

ential deflection of the horizontal fins. Assuming the induced
angle of attack of the upwash and downwash of the deflected
fin on the undeflected fin is constant along the span, then one

can write

[°]
. 8 induced 5

= =2
C, )
6 deflected (38)
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This equation can be proven, given the stated assumption,
by writing the roll mmoment of the induced and deflected
fin in double integral form. Noting that the ratio shcwn
in Eq. (38) is for differential deflection of two fins,

one has

")
induced

S
2

L
deflected

Figure 25 plots I4 versus a/b, using the results of

Is

Adams and Dugan for [C‘ ] and {?1 ] .
8}induced dJdeflected

It should be noted that they use the planform aspect ratio
of the fins, Ap. In the present nomenclature

2
A_=Y/8

f
P P
where Sfp is the planform area of two fins including their
imaginary extension through the body. It can be shown that
Sfp =25, + a[z e + a(tan Age - tan Ate)]

14, as given in Fig. 25, is used in Egs. (37) to calculate
the effective control deflection of each fin.

Now consider the case of fin - fin interference due to

rolling motion. The strategy of this derivation is to de-

termine the interference coefficient by matching the present

roll moment formulation for zero angle of attack of the body

to that obtained by slender body theory. Assuming ap, = 0
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and the rolling speed is 6, then the differential roll

moment can be written (Fig. 26)

2
l L)
dz=urcn§pQ[Uw+(¢r)] dx dr
;?‘ Assuming the rolling speed is small compared to U and

substituting in C,; from Eq. (14), one has

(41a)

dit=kbq ro CN(ue) C(x, r) s(r) dx dr

where a, is the effective local angle of attack along the
span. Adams and Dugan25 showed that the spanwise loading in-

duced on one fin by the other fins was roughly guadratic along

the span. In the present analysis this induced loading will

be simply approximated by a linear spanwise function. There-

fore,

¢r gr

e U, p U, (41b)
where Ip is the rolling motion interference coefficient.
The first term in Eqg. (41b) is the local angle of attack due
to rolling speed and the second term is the reduction in
local angle of attack due to fin - fin interference.
Integrating over the surface of the fin, Eq. (4la)
becomes
bo Xte
l“*Uq.,.[[ r Cyla,) C(x, r) S(r) ar ax (42)
Le

Assuming @, is small and using Eq. (41b), Eq. (42) can be

written
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bo xte
L==bg q, CNa(l - IP) B% [ [ r2 Cc(x, r) 8(r) ax dr
Le

Transforming coordinates (x,r) to fin coordinates (&,7n) and non-

dimensionalizing with respect to q,S,d, one obtains

1 1

c,=-25c -—2——(1-1)M°_/f9?2(n)n(n)c(§)8()dEd
J A 1T NO: a3b p U@ o) (o) n N (433)

Q(n)=a+(b°-a)n (43b)

Taking the partial derivative of Eg. (43) with respect to

p, where p = 5bo/Um, and solving for Ip, one finally obtains

C
L
I =1+ R
P \ (bo-a) 1 1 )
2o—5—q [ [#m am) ce) st e o
a” b as % (44)

C!p is computed from the results of Adams and Dugan (see
Fige 27). CNoz is obtained by numerically differencing Eq. (35)
for ay -~ 0.
3. ROLL MOMENT
The above described body flow field and lifting theory -
will now be applied to the prediction of the roll moment pro-
duced by cruciform fins. If one desired, the present analysis

could be applied in a straightforward manner to two or three

fin configurations. Consider the missile at angle of attack

3k




Qp roll angle ¢, and roll rate 6. The roll moment produced
by a differential surface element on each of the four fins
is

L
" % T2, O 0)" ax ar

where j refers to the j'th fin and Uj

velocity on the j'th fin. Substituting C, from Eq. (14)

is the magnitude of the

and integrating over the fin surfaces, one has

b x
o “te L
L=0 q«»f f r Cx, r) S(r); Cy. (Uj/Uw"‘ dx ar
() xlle J=1 73

Transforming to fin coordinates (&, 7n) and nondimensionalizing

by q.S,d, one obtains the roll moment coefficient

a(b, - a)

c, = [fﬁ’(n) Q(n) C€) s(n) E Cy (UJ/U‘,,)2 &€ dan (45)
J

2 a

where #(7m) is given by Eq. (43b), Q(n) is given by Eq.
(20b), C(g) is given by Eq. (19a), and S(7n) is given by
Eqg. (19b):

U5 is found by taking the magnitude of the local

velocity given in Eq. (23):

= /Ui cosE Gy + (vcj + @ r sin d})e + (wc:j - q) r cos ¢>>2
(46)
Note that if ¢ appears without the subscript j, as in the

above equation, then the angle ¢ is measured from the y axis

for the particular fin under consideration.
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CNj depends upon the local effective angle of attack
aej' To determine this angle the effective surface normal
vector must be found taking into account control deflection
and rolling motion interference. Using T, from Eq. (22),
the effective fin deflection angle aej, from Eq. (37), and
noting that the rolling motion interference affects the 1

component of the normal vector, one can write*

‘ﬁej - [sin(A 5e3) + I @ r/Uw]—i' - cos (563) sin ¢ J + cos (aej) cos ¢ K

Substituting ﬁé and V into the equation for ay, Eq. (21), one

[ETRE S ——

obtains the local effective angle of attack.

- -1 :
aej = gin {U; cos @ {%in (AéeS) + Ip ) r/qm]
(47)
- v+ é r sin ¢)cos [§ ) sin ¢
("3 ) (ea
+ fw. - @ r cos ¢\ cos (6 cos ¢ /63 | U )
(°a ) ( ea\) } & |
|
where 1
n =1+2si . p 2
lnejl +2s n(A 693) 1, x/u, + (1, 6 */U,)

*Ref, 10 accounted for rolling motion interference by way of .
7 and X components of the velocity. That approach is not

considered correct because it also changes the magnitude of the

velocity. In fin - fin interference the magnitude of the approach

velocity to the fin is not changed, but only the angle which it

approaches the fin.
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NORMAL FORCE AND PI'TCH MOMEN
The equations for the normal force and pitch moment produced
by the fins will now be considered. The differential fin force

in the z direction produced by the four fins is (see Fig, 28)"

sz = le cos 61 cos °l - dNa cos 62 sin ¢2

~ AN, cos b, cos ¢, + th cos eu sin ¢h

3 3 3
Writing the right side of this equation as a summation and

substituting de from Eq. (13), one obtains

L
_ 2
dF, = q, §l Cnd(Uj/Uw) cos 63 cos ¢ dx dr

Substituting in C, from Eqe. (14) and integrating over the sur-

face of each fin, one has

b x
te L 2
F,=o0 qw/_p/ c(x, r) S(r)jzs':lch(Uj/U“) cos 63 cos ¢ dx dr
a X
Le

Transforming to fin coordinates (¢(,7n) and nondimensionalizing
by g.S,, one obtains the normal force coefficient due to the

fins:

1 1

o('bo -a) [f 4 2
c, = 5 a(n) c(e) s(n)El ch (UJ/U,) cos by cos ¢ & dn  (48)

o) o

*Note that the sign of dN; is determined by its angular
relationship to the surfate normal vector, that is, positive

de is in the counter-clockwise sense,
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The pitch moment produced by the fins is composed of
two types of terms; the first term is due to the normal force
just derived and the second term is due to the sin 64 compo-
nent of the normal force on the fins (Fig. 28). The second
term produces a pure moment, i.e., a couple, on the missile
body and is usually much smaller in magnitude than the first
term. The differential pitch moment due to both terms from

all four fins is

dm = « x le cos 6, cos @, + T aN, sin(A 61) sin ¢

+x 4N, cos &, sin ¢, + r aN sin(A 52) cos ¢,

2

+ x 4N, cos 53 cos ¢3 - rdN, sin(A 63) sin ¢3

3 3

- x dN, cos 6, sin ¢ - r dN, sin(a 6h) cos ¢,
Writing the right side of this equation as a summation and

substituting dN. from Eqe. (13), one obtains

J

dm = =g 351 ( j/U [x cos éj cos @ - r sin(A 63) sin w] dx dr

Substituting in Cp from Eqe. {(14) and integrating over the sur-

face of each fin, one has
b x
o “te

L
M = g q, [/ C(x, r) s(r):j:Zl CNJ (UJ/UQ)a [x cos é,j cos ¢
xze

- r sin(4 63) sin @] dx dr

Transforming to fin coordinates (¢,n) and nondimensionalizing
DY guS,d, one obtains the pitch moment coefficient due to the

fins:
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-o(b_ - &)
Com = f jﬂ(n) c(g) sin) Z « On (UJ/U ) [J €y m)
2n a (49)
cos 63 cos ¢ - R (n) sin(A GJ) sin ¢] de dn
where
aE, n) = X, +e + ('bo - a) tan A M = 0n) € (495}

5. SIDF FORCE AND YAW MOMENT

The derivation of the side force and yaw moment is very
similar to that of the normal force and pitch moment and,
consequently, will not be given. The side force coefficient

and the yaw moment coefficient are given by:
1 1

4
"‘O'(b - a\
C = ____O__ 2
v - o/ [Q(n) c(&) s(n):jé:lcn‘1 (u,/0,)? cos 6y 5in 9 & dn  (50)

and

11
~o(b, - b
= 3 ffﬂ )L ¢ (U/U) EXPEI

(51)
cos 63 sin @ + R(») sin (A6£ cos ¢] dg dn

6. PANEL LOADS

The panel loads on the fin surfaces are essentially the
same forces and moments derived previously (Sections ¥I-3,
11-4, and II-5), except that they are oriented in a fin coor-
dinate system. Figure 29 shows the coordinate system and

sign convention for the panel normal force N, the panel hinge
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moment H, and the panel root bending moment B, The calcula-

tion of panel loads is useful for two reasons. First, they
provide the most physically meaningful force ancd moments
with which to compare theoretical predictions and experiment
because they do not contain the geometry components of the
roll angle and the fin deflection angle. Second, they
directly provide the loads needed by the structural designer
and the actuator torques needed by the guidance and control
designer.

As the derivation of the panel loads is very similar
to the previous derivations, the derivation will only be
sketched very briefly. Using Eg. (13), the normal force on

a fin panel due to a differential surface element is
= 2
dN = q, C_(U/U,)" ax ar

Proceeding as before, one obtains the panel normal force co-
efficient, N/qS¢;

1 1
i cy(‘no -a)

Cp S / [Q('ﬂ) c(g) s(n) CN (U/Uw)e & an (52)

(o} (o]

Recall that positive normal force points in the direction
of the counterclockwise rotational sense.
The panel hinge moment due to a differential surface
element is
dH = -q, (x - xh) C, (U/U.,)2 ux dr
where x;, is the axial location of the reference line for the
hinge moment. Proceeding as before, one obtains the panel

hinge moment coefficient, H/g _c, S¢;

Lo




11
c, = —--é:-g—-—/ [.2‘(5, n) - xh] Q(n) €(g) s(n) Cy (U/Uw)g as dn (53)

o

The panel root bending moment due to a differential sur-

face elament is
dB = q, (r-a) C (U/Uw)‘2 dx dr

Proceeding as before, one obtains the panel root bending moment

coefficient, B/q (b, - a)Sg;

11

ofb, - a) \ .,

% = s, n Q(n) c(¢) s(n) ¢y (V/U,)° & an (54)
o o
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SECTION III
RESULTS AND DISCUSSION

The results computed and presented in this investigation
were dictated solely by the reguirement to validate and
determine the bounds of the present theory. Consequently,
no results will be given without experimental measurements.
The theory is evaluated by comparing predictions and measurements
for six different fin planforms. The detailed geometry and
reference are given in Table 1 and the planforms are shown
Fig. 30. It can be seen that the aspect ratios range from
1.0 to 2.0 and the learling edge sweep angles range from
0° to 67.49.

The results and comparison with experiment will be dis~
cussed in three sections: panel loads, roll moments, and
control forces and moments. The panel loads to be presented
are panel normal force, panel bending moment, and panel
hinge moment. Normal force, pitch moment, side force, and
yaw moment predictions could have been compared with experimental
measurements but it is felt that the individual panel loads
permit more physical insight into the aerodynamic generation
of the forces and moments. Roll moment characteristics pre-
sented are the induced roll moment, roll damping moment,
and steady state roll rate. These roll characteristics are
of great importance in dynamic flight stability of finned
missiles. Control deflection forces and moments to be pre-~
sented are pitch (or yaw) control and roll control for

various control deflections and roll angles.
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1. PANEL LOADS

a. Panel Normal Force

The panel normal force on the windward fin, fin 4, as
a function of roll angle for @) = 20° for configuration A
at M, = .8 is shown in Fig. 31.% Also shown in Fige. 31 is

7 aAs fin 4

the prediction of Nielsen, Hemsch and Smith.
sweeps from ¢ = 0° to 90° it moves on the windward side of

the body from the angle of attack plane to the x - y plane.

As can be seen by comparing the present result with experi-
ment, the present method predicts very accurately the load-

up of the fin. Above ¢ = 60° the present method predicts

an increasing normal force, whereas experiment shows a

slight drop in normal force. Examining the computer out-

put for spanwise angle of attack and loading it is seen that
as ¢ increases from zero the loading increases due to increase
in local angle of attack across the span. At ¢ = 40° the body
upwash near the fin root has increased to the extent that the
root chord stalls. As the roull angle increases further the
stall location moves outboard, but the inboard sections

begin to add lift as they progress further into post stall.
Noting the experimental trend for ¢ > 40° and the rise in
normal force near ¢ = 80° suggests the following explanation
of the actual fin loadinge. The root chord stall is washed
outboard due to the spanwise velocity component of the lead-
ing edge vortex. This, in turn, decreases the loading

*AI1l panel loads calculated and compared with experimental data
are for missile configuration A.
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along the span such that the total loading decreases. But as
the roll angle increases further and the spanwise location of
stall moves outboard, the portion of unstalled span which could
be affected steadily decreases. At ¢ = 90° it is seen from

the present computer results that stall occurs at the very

tip of the fin, that is, the entire fin is in post-stall. Once
this occurs the fin loading will then begin to increase again
as the angle of attack increases. This hypothesis could be
tested quantitatively by examining experimental spanwise
pressure distributions on a fin. Qualitatively it could be
tested by comparing predictions of the present method with
experimental data for unswept fins and noting that this
phenomenon probably would not occur for unswept geometries.

The panel normal force on the windward fin versus roll
angle for o, = 20° at M, = 1.22 is shown in Fig. 32. Good
agreement between the present method and experiment is de-
monstrated in the figure. The trend in panel normal force
for ¢ < 50° is the same for supersonic flow as for the previous
subsonic case. For ¢ > 50°, however, the experimental data
shows that stall is delayed to a higher roll angle, i.e., angle
of attack, as compared to M, = .8. Figure 32 shows the experi-
mental data still dropping at ¢ = 90° which implies, from the
previous discussion, that the stall angle of attack has not
reached the trip chord. As the present method does not have
any dependence of stall angle of attack on Mach number,

Eg. (35), this characteristic is not demonstrated by theory.

L
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The panel normal force on the leeward fin versus roll
angle for ap = 20° at M, = .8 is given in Fig. 33. Very
good comparison between theory and experiment is demonstra-
ted except near ¢ = 0°, As fin 1 rolls from ¢ = 0° it
begins to unlodad not only due to closer proximity to the
angle of attack plane, but also immersion in the body vor-~
tex. The inboard portion of the fin unloads much more
rapidly than the outboard portion because it is strongly
influenced by the vortex feeding sheet. As the fin nears
the center of the body vortex it produces essentially no
net normal force. The portion inboard of the vortex pro-
duces negative force, i.e., in the negative roll moment
direction, and the outboard portion produces an almost
balancing positive force. This balance is highly depen-
dent on the relation between the radial vortex location
and the fin semispan, For example, if the fin had a smaller
semispan then the zero load roll angle would be less than
that shown in Fig. 33.

Figure 34 shows the same type of comparison as Fig. 33,
except for M = 1l.22. The agreement between theory and ex-
periment is not as good as in the previous comparisons.

Note that the experimental roll angle for zero cross-over
loading decreased from ¢ = 75° for M, = .8 to ¢ = 60° for

Mo = 1le22. This could be caused by either, or both, the
body vortex becoming stronger or the radial location of the
vortex increasing. Recalling that the radial location of the

vortex increases with Mach number, Eq. (11), one could infer
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that vortex strength increases significantly with Mach
number. This has been suggested by Nielsen in Ref. 26.

b. Panel Bending Moment

Figures 35 and 36 show the panel bending moment for the
windward fin versus roll angle for @), = 20° at M, = .8 and
1.22, respectively., Generally good agreement is demonstrated
between theory and experiment. Good agreement between theory
and experiment on the bending moment requires that both the

magnitude of the total normal force, C and spanwise pres-

p,’
sure distribution be correct. Recall t:at the theory for
panel normal force is in essentially perfect agreement with
experiment (Figs. 31 and 32) for ¢ < 40°, Figures 35 and 36,
however, show that the theory slightly underpredicts the
bending moment for the same roll angle range. This implies
that there is slightly more loading outboard and slightly
less loading inboard than predicted by the present method.
If bending moment data for other planforms indicated the
same trend, then the spanwise normal force distribution,
S(7n) given by Eqe. (19b), could be modified slightly.

The root bending moment for the leeward fin versus roll
angle for ap = 20° at M, = .8 and 1.22 is shown in Figs. 37
and 38, respectively. Excellent agreement between theory and
experiment is demonstrated for the subsonic case and fair
agreement is shown for the supersonic case. It is interesting
to note that for M, = 8 near ¢ = 80° the panel normal force
is negative (Fig. 33) while the bending moment remains near zero

(Fige 37) « The reason for this is that the reverse flow under
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the vortex is strong enough to generate a net negative panel
force, but the bending moment produced by the outboard positive
normal force overcomes the negative bending moment produced by
the inboard sections.

c. Panel Hinge Moment

The panel hinge moment for the windward fin versus roll
angle for a) = 2€° at M_ = .8 and 1.22 is shown in Figs. 39
and 40, respectively. The agreement between theory and ex-
periment appears to be poor, particularly for M_ = 1.22. One
must be cautioned, however, as to the sensitivity of the hinge
moment to the location of the hinge line. A better indication
of accuracy of the present method is obtained by a sample com-
parison of the theoretical and experimental axial location of
the center of pressure of the fin., Using the hinge line, Xpo

as the moment reference, one can write
¥ep Op % Sp = H
Solving for the location of the center of pressure nondimen-

sionalized by the root chord, one has

EANRE (55)

Applying this equation to both the experimental and theoretical

data at ¢ = 90° for fin 4, one has
for M = .8 (fg_p_) = ,113 (;32) = .023
r exp r theory
X x
for M_ = 1.22 (-CSE) = .129 (—c‘-’l’- = .02k
T exp r theory




As can be seen by this calculation the experimental center of

pressure is slightly farther aft of the hinge line than predicted
by the theory. Taking the difference between each pair of ratios
one sees that for the worst agreement between theory and experi-
ment in Figs, 39 and 40, the predicted axial center of pressure
is in error only 9.0% and 10.5% of the root chord for M, = .8

and 1,22, respectively.

A second point should be made from the axial center of pres-
sure calculation just presented. Note that the experimental data
shows that the center of pressure moves slightly reward as the
Mach number changes from subsonic to supersonic. This follows
the usual trend of lifting surfaces in transonic flow. The pre-
dicted center of pressure, however, stays essentially constant
with Mach number. The reason for this is that the assumed nor-
mal force distribution for uniform approach flow, Egs. (19), do
not depend upon Mach number. A slight improvement to the pre-
sent theory would be to insert Mach number dependence in the
chordwise distribution function, C(£).

Figures 41 and 42 give the hinge moment for the leeward
fin versus roll angle for @y = 20° at M, = .8 and 1l.22,
respectively. Better agreement between theory and experiment is
shown for the leeward fin than for the windward fin. This might
be somewhat surprising because of the complexity of predicting fin
loading for such a nonuniform approach flow. The reason, however,
is that for ¢ > 50° the panel normal force is small for the lee-

ward fin so that the hinge moment is also small.
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2. ROLL MOMENTS
a, Induced Roll Moment
Figures 43 and 44 show the induced roll moment versus angle

of attack of the body for missile configuration A for ¢ = 20°

at M_ = .8 and M_ = 1.22, respectively. Also shown in the figures

is the prediction of Nielsen, Hemsch and smithe’ Fairly good
agreement is observed between the present method and experiment

for M, = +8, but for M _= 1.22 the agreement is poor. It should

be noted that the induced roll moment is one of the most difficult

nonlinear moments to predict as it is composed of the sum and
difference of the first moment of four spanwise pressure distri-
butions. The physical explanation of the slightly negative
then rapidly increasing positive trend of the induced roll
moment with angle of attack is very difficult to delineate
because of the many complex aerodynamic phenomena embedded
in the present theory. From numerical experiments with the
theory, however, certain important elements can be identified.
These are: radial location of the body vortex, size of the
vortex core, and local stall and post-stall along the span
of the fin,

To understand the trends plotted in Figs. 43 and 44 one
must examine the spanwise loading of all the fins. Figure
45 shows the spanwise loading for each fin for M_ = .8,
The loading at a given spanwise location shown in Fig. 45 is
the integrated value over the local chord. The loading caused
by the primary body vortex is clearly seen on fin 2. The

spanwise location of the stall angle of attack can be

42

D N S S,

ek



R Yo e

R R SRR SN T A N

Kb

recognized as a slight drop in the normal force along fin
3. Tne loading on fins 1, 3, and 4 increases steadily
as the root chord i1s approached due to body upwash and the
increasing length of the chorde On fin 1 the loading drops
sharply near the root chord because it passes inside the
vortex feeding sheet. The roll moment produced by each
fin loading shown is: fin 1, 0.794, fin 2, -0.031, fin 3,
~-0.751, and £in 4, 0.313. It can be seen that th: roll
moments produced by fin 1 and fin 3 roughly balance. Fin 2 and
fin 4, however, do not balance because the reverse flow loading
between the primary body vortex and the root chord on fin 2
drop (in magnitude) the roll moment on f£in 2 to roughly zero.
This results in a large net positive roll moment from fin 4.
By similar reasoning, the small negative induced roll moment
for small angles of attack is due to the increased outboard
loading on fin 2 when the vortex is near the body surface.
Figure 46 gives the induced roll moment versus angle of
attack for configquration B for ¢ = 22,5° and M, = «7« Theory
and experiment are in very good agreement for the rectancular
fin planform. Comparing the induced roll moment coefficient
for the clipped delta and rectangular planform (Figs. 43 and
46) for oy, = 20° it is seen that’ C, = .325 and .186,
respectively. Recalling the previous explanation given concern-
ing the origin of the large positive induced roll moment, one

could ask why CI for the shorter span rectangular planform is

¥ This comparison ignores the fact that the roll angle and
Mach number are not exactly the same.
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not larger than that for the clipped delta. The reason for the

question would be that the reverse flow loading on fin 2 for the
short span fin should produce a relatively larger positive roll
moment than the clipped delta. The reasoning is correct; the
paradox, however,6 is created by the nondimensionalization used in
the present analysis and in almost all other analyses. The
roll moment coefficient is based on the body cross-sectional
area, not on the\fin planform area. If one converts the two
previous coefficients to coefficients based on fin planform
area, one has [CI]S = o347 and .487, respectively. Now it
is clear that the sgort span rectangular planform is much
more efficient at producing an induced roll moment than the
longer span clipped delta.

The induced roll moment versus angle of attack for con-
figuration D for ¢ = 22,5° and M, = .7 and 1.2 is shown in
Figs 47. The theory reproduces the experimental data fairly
well, but the change in induced roll moment with Mach num-
ber is not predicted accurately for this planform geometry.
The reason is probably the effect of Mach number on the
spanwise and chordwise pressure distribution S(7) and
C(¢), as mentioned earlier. Concerning the magnitude of
the induced roll moment coefficient, a direct comparison
can be made between the rectangular planform (Fig. 46)
and the delta planform (Fig. 47) because they both have
the same missile body and planform area. The delta planform

produces a slightly smaller induced roll moment because
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of the greatly different spanwise loading and stall angle

of attack (compare, for example, Figs. 17 and 19).

be Roll Damping Momont

Figure 48 shows the roll damping moment versus angle of
attack for configuration E for M_ = .22. For angles of at-
tack up to 12° here is excellent agreement between theory and
experiment, but above that the theory agrees well with one set
of experimental data and not the other. The only comment that
can be made is that the experimental technique is greatly

31

different between the two investigators. Clare used a roll

29 4sed the standard rolling

oscillation technique and Regan
speed decay method.

A comment should be made concerning the present numerical
method of calculating derivatives such as Clp' As the missile
' fins rotate through a 90° roll cycle, while at nonzero angle of
attack of the body, the forces and moments continually change.
Therefore, one method of computing rolling motion derivatives is

to numerically difference the average value of the force or mo~

ment coefficient over a roll cycle. That is

n/2 haf 2
c, == cy ¢ f cy /& P (56)
P o |p=bP o p=0

where C; represents any force or moment coefficient. This
computation of Cipis appropriate for large values of rolling
speed. The method described by Eq. (56) is one used in the

present analysis. It should be mentioned, however, that
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another method could be used. This method computes the
difference between two values of the coefficient at different

rolling speeds, but at the same roll angle. That is,

c = {C - C, ]/A P
'p [‘ =8,  |e=e, (57)

¢=¢l p=A p p=o0

This method should be used for very low rolling speeds, such
as roll oscillations about a roll trim angle. This method
would yield, for example, the roll angle variation of the
roll damping moment while a missile is oscillating in roll
lock-in.

Figure 49 gives the roll damping moment versus angle of
attack for configuration F for M, = .6 and 1.3. Although the
slight drop in Cfp near ap = 17° is not predicted, the agreement
between theory and experiment is generally good over the angle
of attack range. Comparing Figs. 48 and 49, it is seen that
the trend of Clp with ay is very different between the two plan-
forms. One might suspect, based on the earlier discussion of
induced roll moment, that this different character would be
due primarily to the difference in semi-span between the two
configurations. The roll damping moment for several fin
planforms and semispans was computed in order to identify
the dominant parameter causing the rapid decrease in C!p for
@y near 20°. It was found to be the stall angle of attack of
the planform, and not fin span. For example, consider the

case of holding the planform and span constant, say a rectan-

gular planform of a given span, and varying the aspect ratio
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so that the stall angle of attack varies. One finds that as
the aspect ratio decreases (and the stall angle of attack
increases) the drop in Clp at large angle of attack disappears.

Ce Steady State Rolling Speed

The steady state roll rate of a missile whose fins are
canted is calculated in a manner similar to Clp' The steady
state roll rate is defined as the rolling speed at which the
roll driving moment balances with the roll damping moment.
Therefore, the nondimensional steady state roll rate, pgg, is

the roll rate such that

n

2
[t =
o] p=pSS

Only one comparison of theory and experiment is made for
steady state rolling speed because of the lack of data for other
planforms. Figure 50 shows the steady state rolling speed vs
angle of attack for configuration E for a fin cant of 4°
(differential fin deflection) and M, = .23. The theory slightly
overpredicts Pgg for angles ¢f attack less than 12°, but for
@, > 12° the theory agrees perfectly with one set of data
and underpredicts pgy for the other set. The reason the
theory predicts roll slowdown is rather difficult to determine,
From numerical experiments with the present method it was found
that roll slowdown was predicted for each of the planforms
shown in Fig. 30. One qualitative comment that can be made,

however, is that even though the roll damping moment decreases
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at large angle of attack (Fig. 48), the roll driving moment,

i.es, fin cant, decreases at a faster rate on every planform
investigated.
3, CONTROL DEFLECTIONS

a. Pitch (or Yaw) Control

Pitch control force coefficient is defined to be the
normal force coefficient of the entire missile configuration
(body plus fins) with the fins deflected minus the normal force
coefficient of the entire missile without the fins deflected.

That 1is,

ACZ= c - lc
Zp+r GJ#O ZB+p 53:0

Using slender body theory notation, one can write

AC_ = |C + }lcC - jc -
z [ZB(f)]sjfo [zf(B‘]GJ#O [ZB(f):}ﬁj:O [sz(B)]sj=O (53)

The second and fourth terms are computed in the present
analysis, but the first and third are not. The first term

can be segregated into two terms

[C"‘B(f)]a #0 [Czﬁ(f)]fw o ae (56)
3 £ '

where the second term on the right side of the equation is

the normal force coefficient of the body due to control deflection

of the fins. Substituting Eqe. (56) into Eg. (55), one has
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AC_ = € + |c - |c
2 ZB<53> [zf(B)]éj;éo [Zf(B)]ééro (57)

% A simple result of slender body theory is :sed t» estimate

3 CzB<6 5 Using the definition of the interferencc lift ratio,
3 i
kB' (see Ref. 24, pp. 213-218), one has

A

= c
Cz13<5J_> kB[ zf(B)]aj;éo

§ Substituting this into Eq. (57), one has

Ay = [l " kB] [sz(g)]aj;éo ) [sz(B)]§j=0

- kg calculated tronm slender body theory is derived assuming

(58)

that the angle of attack of the body is zero. One could use EJj.
7 (58) to calculatedC, for any angle of attack and neglect the

3 inconsistency between this and the derivation of kg. The

: present analysis, however, chooses the approach of segregating
E the @), = 0 fin deflection interference and then using this

constant value for nonzero @,. Rewriting Eg. (58) according

to this approach, we have

c_ =j¢C - IC +
%2 [ zf(B)Jéj#o [zf(B)]éfo ka[czf(a)]ej%o (59)
ub=0

oo it

o W e
i w2

Eqe (59) was used in the present analysis for computing pitch control

forces with fin-body interference. kg is a simple function of a/bg

: "‘K’sMﬂwh&w;;aw@wm s

1 and is plotted in Fig. 51l.




Figures 52, 53, and 54 show the pitch control force versus angle
of attack for M, = .7 and 1.2 for fin configurations B, C, and D,
respectively. The control force shown in these figures is for ¢ = 0°

and the horizontal panels deflected 10°, that is, §; = 83 = 10° and

6 = 8y = 0°. The agreement between theory and experiment is generally
fair for the three fin planforms and the angle of attack range. It
can be seen from these three figures that the control force for
@, = 0° for the three planforms is almost identical. Although the
leading edge sweep angles are 0°, 38.7°, and 67.4°, respectively,
all three planforms have the same aspect ratio; 1.67. The trend
with angle of attack is significantly different for the three
planforms. For A!e = 0° (Fig. 52) the control force drops-off
sharpley with angle of attack; to the extent that for 15° < a < 20°
a positive control input produces a negative control force.
Note that this phenomenon is not caused by the body vortex wake,
but is caused by the interaction of the nonlinear normal force
curve, i.e., fin stall, and body upwash. For Ale = 38.7° (Fig.
53), AC, is nearly constant for low ap and then drops-off with
angle of attack. The experimental data for M_ = .7 shows a region
of control force reversal near oy = 17°. For A!e = 67.4° (Fig. 54),
AC, is almost constant out to @ = 14° and then shows a slight
decreasa with angle of attack. Also note the insensitivity of
AC, with Mach number. This is due to the low Mach number normal
to the leading edge of the planform.

Figures 55, 56, and 57 show the pitch control force versus

angle of attack for all panels deflected 10° (¢ = 45°) for fin

glanforms B, C, and D, respectively. The agreement between theory
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and experiment is generally fair for the three planforms over the
angle of attack range. Similar trends of AC, vs angle of attack
are seen in Figs. 55 56, and 57 as compared to Figs. 52, 53, and
54, respectively., For ¢ = 45° and Gj = 10°, however, no control
reversals are seen over the angle of attack range. Also, the delta
planform (Fig. 57) shows that the control effectiveness increases
slightly with angle of attack up to @, = 12° for both Mach numbers.

be. Roll Control

Figures 58, 59, and 60 show the roll control moment versus
angle of attack for M_ = .7 and 1.2 for fin confiqurations B, C,
and D, respectively. These roll control moments are for ¢ = 0°
and §; =-83 = 10° and 6, = 64 = 0°. The theory generally predicts
larger roll control moments than experiment, but the theoretical
trends with angle of attack are valid. For the rectangular and
clipped delta planform ( Figs. 58 and 59) a large region of roll
control reversal occurs for @, > 15°, This region is fairly well
predicted by the present analysss. For the delta planform (Fig.
60) the theory substantially overpredicts the roll control moment
up to @, = 20° and then a control reversal is predicted. The
overprediction near ap = 0° could be due to an inaccurate
spanwise loading or it could be due to a physical characteristic
of control deflection not included in the present theory, that is,
root chord gaps, When a fin panel is deflected for control, a
spanwise gap is created at the root chord of the fin. The gap
size increases as the fin deflection and root chord length
increases. For configuration D the root chord length is

100% longer and 50% longer, respectively, than configurations
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B and C. This characteristic would decrease the predicted value of

the roll control moment if it were included in the theory.

59




SECTION IV

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

A method is described for predicting the forces and moments

produced by fins attached to a missile. The body is assumed to be
a circular cylinder with cruciform fins (or wings) as attached
lifting surfaces. The method is applicable to speeds up through
transonic flow as long as the fin leading edge is subsonic. The
missile can have an arbitrary roll (or bank) angle and each fin
can have arbitrary control deflection. The vortices shed from

the body are assumed to be symmetric as they influence the

loading on the fins.

Extensive comparisons are made between predicted results and
experimental measurements. Included in the comparisons are:
panel normal force, root bending moment, hinge mcment, induced
roll moment, roll damping moument, pitch control forces, and
roll control moment. The force ard ' ment predictions are
compared with experimental data for six different fin geometries.
Good agreement between predictions and experiment is obtained for
panel forces and moments and roll moments for all of the fin
planforms. Generally fair agreement is obtained for fin control
forces and moments,

The following conclusions and recommendations are drawn
from the present investigation.

l. The spanwise and chordwise pressure distributions are
of sufficient accuracy to be used as an aid in

estimating root bending and hinge moment structural
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3.

4.

5.

6.

T

loads. The hinge moment predictions can also be used as

a design aid in sizing control deflection actuators.

Evidence was found to suggest that stall near the root

chord on highly swept fins washes vitboard and, consequently,
decreases the outboard loading on tne fin., Although this
element is not in the present theory, one might concieve

of a method of approximating this phenomenon in the analysis,
Certain comparisons between theory and experiment suggest
that the stall angle of attack increases with Mach number.

If sufficient data could be gathered on this trend, it should
be added to the analysis.

The results of the present method could be enhanced by
improving the empirical data for the body flow field model

or by using a more accurate body flow field model. An
improved flow model should contain more compressibility
effects.

In general, short span fins produce larger nonlinear forces
and moments, such as induced side force and induced roll
moment, than larger span fins. This typically occurs even
though the exposed fin area is smaller.

The present method could be improved by requiring the basic
chordwise and spanwise pressure distributions to be dependent
on freestream Mach number. This should be done after suffi-
cient pressure distribution data on wing along planforms was
available for various Mach numbers.

The nonlinear decrease in roll damping moment for large angles

of attack was found to be due to the stall angle of attack
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8.

9.

10.

11,
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of the fin. The stall angle is primarily determined by

the aspect ratio and leading edge sweep.

The present method should be coupled to a body force and
moment predictive method so that complete missile force and
moment predictions are available.

The rapid decrsase in pitch control force at large angles of
attack is predicted by the method.

Predicted roll control reversal at large angles of attack
generally agrees with experimental data.

The present method should prove to be a valuable tool for
missile designers because of its ability to address general

fin planforms.
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Figure 1. Coordinate System and Schematic of Rody Vortices
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Figure 20. Normal Force Coefficient vs a for Clipped
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Figure 21. Normal Force Coefficient vs a for Trapezoidal
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Figure 22. Normal Force Coefficient vs a for Delta
Planform (Ag = 4.)
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Induced Flow Field Induced Pressure Field

Figure 23.

a) Pitch Control

b) Roll Control

Control Interference for Pitch and Roll Control
(from Ref. 24)
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a) Panel 1 beflection b) Panel 2 Deflection

c) Panel 3 Deflection d) Panel 4 Deflection

Figure 24. Control Interference for Individual Panel
Deflection
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Figure 25. Deflection Interference Coefficient vs a/bg
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Figure 26.

Induced Angle of Attack Due tc Rolling Speed
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Figure 29,

Sign Convention for Panel Normal Force, Hinge
Moment, and Root Bending Moment
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Figure 30. Fin Planforms Used for Comparison of Theory
and Experiment
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Figure 31, Windward Panel Normal Force vs Roll Angle for
Configuration A (My = .8)
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Windward Pqnel Normal Force vs Roll Angle for
Configuration A (M°° = 1,22)
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Figure 33, Leeward Panel Normal Force vs Roll Angle for
: Confijuration A (M, = .8)
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Figure 34, Leeward Panel Normal Force vs Roll Angle for
Configuration A (M, = 1.22)
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Figure 35. Windward Fin Root Bending Moment vs Roil Angle
for Configuration A (M, = .8)
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Figure 36. Windward Fin Root Bending Moment vs Roll Angle
for Configuration A (M, = 1.22)
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fut Configuration A (Mg, = .b)
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Figure 38. Leeward Fin Root Bending Moment vs Roll Angle
for Configuration A (Mg = 1,22)
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Figure 39. Windward Fin Hinge Moment vs Roll Anale for
Configuration A (M, = .8)
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Figure 490. windward Fin Hinge Moment VS Roll angle for

Conf.iguration A (Mp = 1.22)
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: Corfiguration A (Mg = .8)
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Leeward Fin Hinge Moment vs Roll Angle for
Configuration A (M, = 1.22)
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Figure 43. 1Induced Roll Moment vs a,, for Configuration
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Figure 43, Spanwise Fin Loading for ay,

Configuration A (M, = .8)
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Figure 46. Induced Roll Moment vs @) for Configuration B
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Figure 47. 1Induced Roll Moment vs oy, for Configuration D
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Figure 49. Roll Damping Moment vs @, for Configuration F
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Interference Lift Ratio vs a/bo (from Ref. 24)
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Figure 52. Pitch Control Force vs a),, for Configuration B

(o =0°1 613 63 =l°°, 62= 64 =0°)
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Figure 53, Pitch Control Force vs a;, for Configuration C

(¢ = 0°, 61‘ 63 = 10°, 6 = 64 = (0°)
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Figure 54. Pitch Control Force vs «, for Configuration D
("0‘, 61'63310°,% 364’0"

126

T L rmenteebn st 0«0



PRESENT METHOD

00 F (o} EXP. (REF. 28) "
-9 A \ 1 1
0 5 10 15 20 25
ab(DEG)

Figure 55. Pitch Control Force vs a) for Configuration B
(9 = 45°, 61 = 62 = 61 = 64 = 10°)
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Figure 56. Pitch Ccntrol Force vs a) for Configuratinn
o~ (Q = 45", 61 = 62 = 53 = 64 = 100)
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Figure 57. Pitch Control Force vs @, for Configuration
D (¢ = 45°, 61=52=63=64 = 10°)
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Figure 58. Roll Control Moment vs d.g for Configuration B
(O=0°'61=‘63=10,62=64=°)
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